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Abstract and Keywords

The artificial grammar learning (AGL) paradigm enables systematic investigation of the 
acquisition of linguistically relevant structures. It is a paradigm of interest for language 
processing research, interfacing with theoretical linguistics, and for comparative 
research on language acquisition and evolution. This chapter presents a key for 
understanding major variants of the paradigm. An unbiased summary of neuroimaging 
findings of AGL is presented, using meta-analytic methods, pointing to the crucial 
involvement of the bilateral frontal operculum and regions in the right lateral 
hemisphere. Against a background of robust posterior temporal cortex involvement in 
processing complex syntax, the evidence for involvement of the posterior temporal cortex 
in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, 
covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic 
rules. The language acquisition data suggest that comparisons of learnability of complex 
grammars performed with adults may now also be possible with children.

Keywords: artificial grammar learning (AGL), statistical learning, language acquisition, neuroimaging, meta-
analysis
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THE artificial grammar learning (AGL) paradigm enables systematic investigation of 
acquisition of linguistically relevant structures by exposing participants to examples. The 
AGL task was first used by Arthur Reber (1967). In AGL, participants acquire a formal 
grammar on which they are later tested, in a separate testing phase (see Fig. 33.1). In the 
first acquisition phase, participants are exposed to a sample of sequences generated from 
a formal grammar. In the standard format for adult human participants, they are 
informed (after exposure) that sequences were generated according to a complex system 
of rules and asked to classify novel items as grammatical or not. However, the procedure 
of testing will inevitably vary depending on the population studied.

There are two basic strengths of the AGL paradigm for use in the language sciences. 
First, it is used as a model system to study aspects of natural language processing; for 
example, syntactic or phonological processing, in isolation from semantic influence. Since 
an artificial language is novel to all participants, prior learning is controlled. AGL has 
been most widely used as a model system for syntax, but work related to phonology has 
also appeared (Tessier, 2007). The second strength is the possibility to study a wide range 
of populations using identical, or at least comparable, paradigms. Populations have 
ranged from prelinguistic infants to adults, as well as non-human primates and songbirds 
(a review on comparative animal studies using AGL is, however, outside the focus of this 

chapter). Comparisons allow contributions to research questions on language 
acquisition and evolution. These two strengths of the paradigm will be illustrated 
throughout this chapter, where we will review the state-of-the-art in AGL research, 
including research with infants, with a particular focus on neuroimaging work. A main 
limitation of the paradigm, namely the constraints on generalization to natural languages, 
will also be addressed, through clarifications of some of the main differences between 
AGL and natural language research.

Click to view larger

(p. 756) 
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33.1.1 The AGL key

We will start by introducing a key for understanding variants of AGL experiments. The 
key is composed of five questions: Which elements? Which grammar? Which simpler 
features controlled for? Which violations? Which learning?

33.1.1.1 Which elements?
The most common type of presentation in AGL paradigms is visual stimulus presentation. 
However, auditory paradigms are also frequent, and, furthermore, there are some 
examples of tactile AGL paradigms (Conway & Christiansen, 2005). Visual, auditory, and 
tactile paradigms might all use the same grammar, but they differ in the perceptual 
features of the discrete elements that carry the grammar. In principle, the elements of an 
AGL study can be any stimuli, in any sensory modality, that can be recognized by the 
participants as a discrete element. The most commonly used elements are (1) spoken or 
written consonant-vowel (CV) syllables, (2) written consonants, and (3) pseudowords. 
More unusual elements that have been used include, for example, abstract visual shapes 
(Fiser & Aslin, 2002; Sturm, 2011) or symbols (Altmann, Dienes, & Goode, 1995), visual 
tiles (Stobbe, Westphal-Fitch, Aust, & Fitch, 2012), and written symbols from notational 
systems unknown to the participant (Mei et al., 2014).

While the choice of grammar is usually in focus in AGL studies, the choice of elements 
will also affect outcomes. For instance, a faster learning speed is expected when using 
elements known to the participants (e.g., example letters) compared to unknown 
elements (e.g., letters from other writing systems). We will come back to the influence of 
using visual versus auditory elements in the section on neuroimaging data, where it will 
become clear that the underlying neural architecture subserving AGL changes, 
depending on the sensory modality of the elements.

Fig. 33.1  The AGL paradigm was introduced by 
Reber (1967). Reber separated an acquisition phase, 
where the participant is exposed to grammatical 
sequences, from a test phase, where new 
grammatical and non-grammatical sequences were 
presented. The participants were asked to indicate 
whether each test sequence is grammatical or non-
grammatical. This figure depicts the original 
paradigm used by Reber (1967), although the 
acquisition phase here is adapted for use with a 
modern keyboard instead of pen and paper. The 
elements in Reber’s experiments (and many 
experiments since) are consonants only, rendering 
sequences superficially dissimilar to language 
stimuli, which naturally include vowels as well. The 
sequence processing and sequence learning 
mechanisms at work in AGL are however here 
explored as relevant for language learning and 
language processing, independent of the element a 
particular AGL paradigm uses.

(p. 757) 
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33.1.1.2 Which grammar? Formal language theory and AGL
Informally, the grammar denotes the relation between the discrete elements in some 
sequences composed of those elements. A powerful illustration of a grammar is a 
transition graph (see Fig. 33.2—“REBER grammar”). To generate or parse a grammatical 
sequence such as “VXR,” we need to start from the start node, traverse the “V” arrow, 
followed by “X,” “R” and finally the start/end-of-string symbol, # and end up in the end 
node. The sequence “VRX” is an example of a non-grammatical sequence. This 
information is contained in the transition graph, because when the “V” arrow connected 
with the start node has been traversed, we end up in the lower left node where there is 
no arrow out that is labeled “R.” This results in a parsing failure. As soon as the arrows 
and nodes in this graph are changed, the graph corresponds to a different grammar. 
Features of the grammar used, such as its size and which class it belongs to, will be the 
most important factors determining learnability and generalization. In this section, we 
will introduce classes of grammars that might influence learnability in ways that are 
interesting for language sciences. Such grammar classes are the topic of study in the 
field of formal language theory.

The branch of mathematics called formal language theory delineates important principles 
of sets of sequences (called sets of strings). Since the beginning of AGL research, formal 

language theory has been its theoretical basis. Formal language theory 
has been used in AGL research to test whether classes of formal grammars induced by 
the participant correspond to different levels of behavioral processing difficulties. Formal 
grammars stipulate a number of rules, for example written down as so-called rewrite 
rules between symbol sequences (see next paragraph). The rules can, however, also be 
written using other notations. The class of regular grammars for instance (see next 
paragraph), can alternatively be noted with regular expressions or transition graphs 
(which are diagrams of so-called finite state automata) as in the top two panels of Figure 

33.2. Although transition graphs are commonly used in the empirical AGL literature, we 
now use rewrite rules, as they show the origin of the names of two more complex 
grammar classes relevant for AGL.

(p. 758) (p. 759) 
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Fig. 33.2  Exemplifies the class of finite state 
grammars (FSGs) with the transition graph 
representation of the REBER grammar. In addition, 
we illustrate (the two topmost layers) of BROCANTO 
with the same kind of “flat” FSG representation (see 
also Opitz, 2003). Here, we also illustrate 
BROCANTO using other (informal) representations to
emphasize the hierarchical relation between its 
phrasal versus sentence layers (see lower panel).

Click to view larger

Fig. 33.3  The Chomsky hierarchy.

Reprinted from Brain and Language, 120 (2), Karl-
Magnus Petersson, Vasiliki Folia, and Peter Hagoort, 
What artificial grammar learning reveals about the 
neurobiology of syntax, pp. 83–95, doi.org/10.1016/
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Formal grammars 
generate string sets that 
are grammatical. These 

string sets are the formal languages. If a sequence does not belong to this string set, it is 
non-grammatical. Formal grammars are finite definitions of possibly infinite formal 
languages. More precisely, formal grammars are algorithms with a set of instructions. 
These algorithms are typically non-deterministic, since there is no specified order of how 
the instructions should be applied. Depending on the form of the rules, formal grammars 
can be classified into the complexity classes of the Chomsky hierarchy (see Fig. 33.3) . In 
one version, this hierarchy consists of regular (finite state), context-free, context-
sensitive, and general phrase-structure grammars. The relation between classes 
of rules, classes of grammars, and classes of languages is subtle, since a language can be 
generated by many different grammars. However, if all grammars G generating the 
language L contain a context-free rule, for example, then L can be said to be context-free. 
Informally, regular grammars are built from a collection of production rules of the form 
S→abS and S→ab (where lower case indicates terminal symbols and S a non-terminal
sentence or start symbol). The non-regular context-free case allows the right-hand side to 
involve terminal symbols around the sentence symbol in addition, as in S→aSb and S→ab. 
In the non-regular context-sensitive case, the left hand side has a “context” as 
exemplified in a a Sb b →a a a Sb b b  (cf., Davis, Sigal, & Weyuker, 1994). 
However, this latter class of grammars overshoots the machinery needed to formalize the 
structure of natural language. A class of grammars more closely on par with the needs for 
parsing natural languages is, for example, described by so-called multiple context-free 
grammars (accessibly handled in Clark, 2014, who also discusses the more well-known 
alternative formalism of mildly context-sensitive grammars), an issue we will return to in 
this chapter.

Although AGL research inhabits a unique niche in language research, one must 
remember its limitations. For generalization to natural language to be valid, it is crucial 
to determine which of the many differences (e.g., between the rules of artificial grammars 
and natural grammars) are surface differences and which are deeper, so that they 
actually limit generalizations. One such potential difference is the absence of hierarchical 
rules in many artificial grammars (see section 33.1). An additional and related difference 
is that most AGL experiments do not introduce syntactic word categories upon which 
natural grammar rules can be applied. Here, validation of results from AGL in natural 
language paradigms, as well as “hybrid” languages is a good way forward. Some AGL 
paradigms include grammars like BROCANTO (see Fig. 33.2), where the language is 
more closely modeled on a natural language. BROCANTO is a small language that has 
words belonging to particular word categories such as nouns, verbs, adjectives, adverbs, 
and determiners. The nouns refer to objects in a board game, and the verbs refer to 
particular actions in the game (e.g., push), and so forth. The language is learned via a 
game in which participants learn the semantic content of the words. Moreover, 
BROCANTO has grammatical rules mimicking rules of a natural language in the sense 
that participants are able to build phrases according to separate phrase finite-state 

j.bandl.2010.08.003, Copyright © 2010 Elsevier Inc., 
with permission from Elsevier.
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grammars (FSGs) for the noun phrase and verb phrase (see Fig. 33.2, lower panel). These 
are then combined according to a sentence-level FSG. On the other side of the spectrum 
of artificial grammar learning stimuli, there are simplistic triplet stimuli, for example ABB 
or AAB patterns. Results obtained with such stimuli are harder to assess in relation to 
natural language, but are more useful for comparative studies on non-human or infant 
cognition.

33.1.1.3 Which simpler features are controlled for?
AGL paradigms enable sophisticated control of the computational properties of sequential 
stimuli as well as the simpler features such as letter positions, chunk frequency, 
repetition patterns, and so forth. To start with, it has been shown that start and terminal 
positions in a sequence have a salient role, and subjects are more attentive to regularities 
at these positions (Endress, Nespor, & Mehler, 2009). One possibility is to minimize the 
role of terminal positions by using stable prefixes and suffixes and by experimental 
manipulations in the middle part of sequences (Uddén, Ingvar, Hagoort, & Petersson, 
2012). The second robust finding is that subjects are highly sensitive to chunks of two or 
three adjacent letters (so-called bi- and trigrams) that are frequent in the 
exposure sequences. The sensitivity to these chunks can be viewed as an initial shallow 
processing of the grammar. It has been shown that bi- and trigram chunk strength 
predicts classification performance at the beginning of the acquisition phase, rather than 
at the end, where grammaticality status of the complete string is a better predictor 
(Forkstam, Elwér, Ingvar, & Petersson, 2008). From one point of view, it is likely that 
participants become sensitive to n-grams with larger and larger n, with continued 
exposure. When n is large enough, the whole grammar will be contained in such chunks. 
However, this gives a highly inflexible representation of the grammar, so it is clear that 
this does not explain all learning that takes place in an AGL experiment. In particular, for 
grammars that use multiple non-adjacent dependencies (languages where elements far 
apart predict each other), pure n-gram representations will be an inflexible processing 
path. A common way of segregating at least some aspects of pattern- or similarity-based 
learning from learning the full grammar is to control for the presence of bi- and trigrams, 
for example in order to match their frequency over grammar and non-grammatical 
sequences. The procedure when controlling for short n-grams using a measure called 
associative chunk strength (ACS) has been described previously (Meulemans & Van der 
Linden, 1997).

Other “similarity-based” or “pattern-based” accounts are also present (Kinder & Lotz, 
2009). An influential study (Brooks & Vokey, 1991) presented a repetition structure 
account of AGL, suggesting that the repetitions of elements (globally in the sequence) 
create a pattern that is learned and used as a template during the test phase. Repetition 
patterns can be represented in different ways. As two examples, the sequence “ABCDEA” 
has the repetition pattern “x - - - - x” and the sequence “ABBCAC” has the repetition 
pattern “122313.” The presence of repetitions of the same elements across a sequence 
has been shown to explain so-called transfer effects, where successful classification is 
achieved, although the test phase is implemented on a different set of elements, for 

(p. 761) 
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example from a different modality (Gómez, Gerken, & Schvaneveldt, 2000; Tunney & 
Altmann, 1999). If repetition structure is controlled for when designing the stimulus 
material (e.g., simply by not letting any element repeat in any sequence), it is a sign of 
quality. A final pattern similarity that can be controlled is the similarity of the whole test 
strings compared to whole acquisition strings, for example as tested with the so-called 
“edit distance.” Similarity-based accounts of AGL can be contrasted with rule-based 
accounts (Hauser, Hofmann, & Opitz, 2012), and these forms of learning are then thought 
to operate in parallel during a standard AGL experiment (Opitz & Hofmann, 2015). To 
conclude, we consider ACS to be the most important pattern to control for. More 
generally, any pattern that is salient to an observer of the complete stimulus set should be 
removed or controlled for. While pattern learning is a real issue, it is perhaps too much to 
expect all patterns to be controlled for in the same experiment. Thus, one good approach 
is, for example, to minimize the effect of terminal positions, manipulate ACS, and to get 
some kind of handle on the amount of pattern/similarity-based learning and how it might 
interact with the experimental manipulations in focus.

33.1.1.4 Which violations?
The most common way of probing grammatical knowledge is to create sequences that 
violate the grammar. The participant’s task is then to segregate grammatical sequences 
from the ungrammatical sequences that include violations. Depending on how violations 
are constructed, different aspects of the grammar can be probed. Different violations can 
lead to large differences in the learning outcome (de Vries, Monaghan, Knecht, & 
Zwitserlood, 2008). The underlying neurobiology might also change (Opitz & Friederici, 
2007). A related issue is the inclusion of proper tests for generalization, not only to new 
grammatical sequences that look similar, but also to new kinds of sequences (e.g., longer 
sequences). Although such tests help clarify which aspects of the grammar participants 
actually acquired, they have rarely been applied.

These aspects are important to consider when comparing AGL to other statistical 
learning (SL) tasks. At least for the SL studies we review in this chapter (note that this 
might not apply to SL tasks more generally), the main differences between AGL and SL 
experiments are that (1) SL regularities are not necessarily explicitly stated as following a 
grammar (although a formal analysis would probably often lead to the answer that they 
do). High transition probability is, for example, a more common way of expressing the 
form of regularities in SL experiments. It is more often the case that there is no 
generalization test at all, not even to new examples with the same transition probabilities. 
(2) AGL experiments often use two basic conditions: correct versus violation sequences 
(in all the violation sequences, large parts still follow the grammar), where SL tasks, in 
the context of this chapter, use correct versus random sequences (random sequences 
have no regularities whatsoever). In the wider SL literature, it is common to contrast 
higher transition probabilities with lower transition probabilities. Generally, as well as for 
this chapter, AGL paradigms are more homogenous than SL paradigms, and AGL can also 
be considered a part of a wider range of statistical learning (SL) tasks. Statistical 
learning is a term that can refer to the learning processes that take place during AGL 

(p. 762) 
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paradigms, but others use this in a narrower, or wider sense. Due to this situation, it is 
crucial that the intended meaning of statistical learning is specified in the local context 
where it is used.

33.1.1.5 Which learning (implicit/explicit)?
When Reber (1967) introduced the AGL paradigm, the focus was the use of the paradigm 
for research on implicit learning. Today, there is more variation in the purpose of using 
the paradigm, and thus there are also varied methods that might ensure the grammar is 
implicitly learned, or not. Generally, it is important to keep the distinction between 
implicit versus explicit learning processes in mind because the processes are potentially 
segregated, for instance on a neurobiological level (Yang & Li, 2012, see discussion next), 
and this distinction also accounts for some differences in how infants acquire their L1 
(implicitly) and how adults study languages (explicit learning). Note, however, that 
explicit learning is the exception and implicit learning the rule; hence, implicit learning 
processes will form the bulk of what is learned also during adult language learning. One 
of the clearer definitions of implicit learning is that by Seger (1994), reviewed in Uddén 
et al. (2010). In her view, implicit learning has four characteristics: (1) no or limited 
explicit access to the knowledge acquired and how it is put to use; (2) the acquired 
knowledge does not consist of simple association, but is more complex; (3) it is an 
incidental consequence of information processing and not explicit hypothesis testing; and 
(4) it does not rely on declarative memory mechanisms for learning—far from all AGL 
studies which describe learning processes that have all of these characteristics. This 
results in a literature with mixed learning styles (i.e., different proportions of implicit and 
explicit learning). The present situation for AGL (and SL) is that the same stimuli can be 
learned implicitly, explicitly, or with a mixture of these learning styles. This is a rare 
situation for cognitive neuroscience, and there is now an empirical literature 
focusing on this aspect in particular (Gheysen, Van Opstal, Roggeman, Van Waelvelde, & 
Fias, 2010; Wierzchon, Asanowicz, Paulewicz, & Cleeremans, 2012).

Studies emphasizing fully implicit learning processes are rare, and most study designs 
allow for explicit processes to influence results. Ways of assessing subjective conscious 
access are evolving fast, and with updated paradigms it has become clear that there is a 
fair amount of conscious access during standard AGL experiments (Wierzchon et al., 
2012). In this study (as in the standard case), participants were engaged in a short-term 
memory task using an acquisition sample of sequences generated from a formal grammar. 
Subjects were later informed that the sequences were generated according to a complex 
system of rules and asked to classify novel items as grammatical or not. Subsequent 
ratings on five different scales, including confidence ratings, “feeling of warmth,” and a 
rule awareness scale, suggest that increased conscious access is related to increased 
performance under these standard conditions. Similar findings are present with a 
common SL task (Batterink, Reber, Neville, & Paller, 2015). In future studies, where 
learning style (implicit or explicit) is of crucial importance for the interpretation of the 

(p. 763) 
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results, a combination of rating scales should be used to assess conscious access during 
AGL paradigms.

There are several methods of minimizing explicit processes during the acquisition phase. 
As already mentioned, participants are typically engaged in a short-term memory task 
using an acquisition sample of sequences generated from the grammar. This means that 
acquisition is relatively masked, for example compared to acquisition with an explicit 
instruction to figure out rules behind the sequences. Another way is to use a more 
complex grammar, acquired during a longer learning period. Avoiding explicit recognition 
of patterns by minimizing them in the stimulus set (see section on controlling for 
patterns) is another way. In the test phase, a critical measure for showing successful 
implicit learning is the participants’ relative preference for grammatical and relative 
aversion of non-grammatical sequences. In this supposedly more implicit version of 
testing for sensitivity to the grammar, participants only need to indicate whether they like 
or dislike a sequence and therefore there is no need to inform them about the presence of 
a complex generative rule system before classification. Moreover, from the participants’ 
point of view, there are no correct or incorrect responses, and the motivation to use 
explicit (problem-solving) strategies is thus minimized. The fact that preferences develop 
as an effect of exposure has been investigated as the so-called “structural mere-exposure 
effect” (Manza & Bornstein, 1995; Zajonc, 1968). Using so-called indirect measures, for 
example, reaction times may also be a more sensitive method of tapping into implicit 
structural knowledge, when compared to the accuracy in judgment tasks (Batterink et al., 
2015). Through the acquisition and testing phases, naturally the use of explicit feedback 
on performance should also be avoided if the goal is to minimize explicit learning.

We think it is crucial to put the discussion on the influence of learning style into 
proportion. It cannot be excluded that learning style has an influence on the underlying 
recruited neurobiology. At the same time, sensory neuroscience (i.e., neuroscience of 
visual perception, and so on) shows that the brain organizes according to features of 
stimuli. For instance, consider encountering a new creature for the first time. This will 
affect sensory pathways in a complex manner. Crucially however, we expect that the 
corresponding sensory regions will process the stimuli irrespective of whether the 
participant is explicitly informed about the existence of this creature (or even its parts or 
distinguishing features), or just encounters exemplars with familiarization as an 
incidental consequence (i.e., implicit learning). There might be slight variations, but the 
basic theme of brain organization is, in this case, according to stimulus features. While 
sequential structure might be considered an abstract stimulus feature, this remains to be 
demonstrated. We are not aware of any neuroimaging data in AGL literature that directly 
test this issue, for processing of structured sequences in AGL.

What about the distinction between declarative/explicit and non-declarative/procedural 
learning (Squire & Zola, 1996), which is clearly thought to segregate into the medial 
temporal lobe and the striatum, respectively? This distinction largely builds on reasoning 
from data across studies that use stimuli from different perceptual modalities, or 
alternatively, motor sequence learning. Although related proposals, linking hippocampal 

(p. 764) 
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activation to spatial stimulus features, have appeared (O’Keefe, 1999), it is still too often 
overlooked that it is stimulus features that drive the distribution of activity across the 
medial temporal lobe and striatum. Experiments testing the same kind of regularities 
across perceptual and motor sequence learning modalities are needed. One study has 
yielded a more complicated pattern of activation across these regions for perceptual 
versus motor sequence learning (Gheysen et al., 2010), which cannot be accounted for by 
the more simple classical theory (Squire & Zola, 1996). In any case, current literature on 
neuroimaging studies of AGL, under fairly explicit learning conditions, may still 
contribute to answering a range of questions.
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33.1.2 AGL performance as a trait

Traits do not vary from measurement to measurement and day to day in a participant, 
although some traits can change across the lifespan. If learning ability in AGL is a stable 
trait, it is possible that there is a link between this trait and some natural language 
processing trait. There have been several suggestions on which aspect of natural 
language performance would be most closely related to implicit learning abilities (Wells, 
Christiansen, Race, Acheson, & MacDonald, 2009). Among the suggestions are: discovery 
of phonological and distributional cues to lexical categories; acquisition of gender-like 
morphological systems; segmentation into syntactic phrases; relative clause 
comprehension; and processing of long-distance relationships between words. None of 
these have been sufficiently tested to draw conclusions. It has been shown that individual 
differences in the processing of non-adjacent dependencies in natural language are 
correlated with individual differences in an implicit learning task on sequences generated 
from an artificial grammar (Misyak, Christiansen, & Tomblin, 2009). Conway et al. (2010)
found correlations in individual differences between two different implicit learning tasks 
(a visual implicit learning task and an auditory AGL task), and a sentence processing task 
where the task was to predict the final word. This effect was not mediated by individual 
differences in working memory (as measured with the digit span task), cognitive control 
(as measured with the Stroop task), or non-verbal intelligence. Individual differences in 
the location of regional functional activity during a natural language task, which varied 
from the anterior to the posterior portion of the left inferior frontal gyrus, overlapped 
with individual differences in the location of functional activity during sequence 
processing (Petersson, Folia, & Hagoort, 2012). From these correlations, it is clear that 
some relationships between individual differences in implicit learning and natural 
language processing do exist and that they, to some extent, may represent the same trait 
(i.e., overlapping traits). We are not aware of any studies on whether individual 
differences in phonological processing and AGL are correlated. This is an area for 
future research. For a wider discussion on SL as a trait, see Siegelman and Frost (2015).

We have already started the discussion on the relation between (adult) AGL and natural 
language processing, but how is this relevant to language learning? One point of view is 
that learning (particularly implicit learning), is a consequence of processing (e.g., 
through priming, see Chang, Dell, Bock, & Griffin, 2000), so in that sense, adult AGL 
might at least be relevant to understanding adult language learning (both implicit aspects 
of L2 learning and L1 adaptations). Implicit AGL paradigms are generally of higher 
relevance for L1 language acquisition. However, the underlying neurobiology develops/
matures remarkably and changes in AGL performance are expected as a consequence of 
growing up. This limits the relevance of adult AGL experiments for L1 language learning.

(p. 765) 
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33.2 Meta-analyzing neuroimaging of AGL
While AGL studies are used to answer a wide range of questions in adult psycholinguistic 
literature, it is important to understand their contribution to the literature on 
neuroimaging. This chapter will mostly cover studies using functional magnetic 
resonance imaging (FMRI), although event-related brain potential (ERP) studies and 
functional near-infrared spectroscopy (fNIRS) studies on infants will be covered in section
33.4 (there are yet no magnetoencephalography [MEG] studies that we are aware of).

Currently, FMRI literature on AGL spans at least 15 original studies on distinct samples 
(Bahlmann, Schubotz, & Friederici, 2008; Fletcher, Buchel, Josephs, Friston, & Dolan, 
1999; Folia, Forkstam, Ingvar, Hagoort, & Petersson, 2011; Forkstam, Hagoort, 
Fernández, Ingvar, & Petersson, 2006; Friederici, Bahlmann, Heim, Schubotz, & 
Anwander, 2006; Hauser et al., 2012; Kepinska, de Rover, Caspers, & Schiller, 2016; 
Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; Opitz & Friederici, 2003, 2004,
2007; Petersson, Forkstam, & Ingvar, 2004; Seger, Prabhakaran, Poldrack, & Gabrieli, 
2000; Skosnik et al., 2002; Strange, Henson, Friston, & Dolan, 2001; Wilson et al., 2015). 
A qualitative survey of this literature reveals that the left inferior frontal gyrus (LIFG), 
and left frontal operculum (FOP, sometimes with right homologue areas), sensory regions, 
striatum, the inferior frontal sulcus (IFS), the parietal cortex, and sometimes left 
posterior superior temporal cortex are often reported as active in AGL studies. Previous 
reviews have focused on LIFG contributions (Uddén & Bahlmann, 2012), and further on 
we will discuss contributions from other regions of noticeable interest from a natural 
language perspective. We will, however, start to describe the involved neural circuitry in 
AGL from a relatively unbiased position: by means of meta-analysis.

The above-mentioned literature is beginning to approach the volume where a systematic 
quantitative meta-analysis is possible. The strength of this approach is that it gives a 
summary of a few regions that are robustly activated by a task or contrast while avoiding 
selective biases (due to previous knowledge) that can arise during the process of 
interpreting, summarizing, and reviewing results. In an FMRI-context, the term contrast
is used to refer to probing of the data of one condition relative to another condition (i.e., a 
comparison between two conditions). We will use the contrast comparing activity for non-
grammatical sequences, over and above activity for grammatical sequences. For readers 
unfamiliar with terms like peaks, clusters, contrast, and multiple comparison 
correction in an FMRI-context, we refer to textbooks covering the basics of the method 
(e.g., Huettel, Song, & McCarthy, 2004).

We have used the GingerALE method in a first attempt. In order to simplify the 
description of this method, let us first consider its two main steps: (1) activity brain maps 
from different studies are overlaid on top of each other to determine coactivation, and (2) 
the joint activity is statistically tested (with permutation methods). In other words, by 
forming the union across statistical landscapes from each study, centered at the reported 
peak coordinates (spread determined by the number of subjects), the activation likelihood 

(p. 766) 
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estimation (ALE) method determines the overall likelihood of activation of clusters in a 
union map by a permutation test (Eickhoff et al., 2009). The ingoing FMRI coordinates 
are, however, crucially dependent not only on the variations of paradigms (as described in 
the AGL key) but also on the contrasts used when probing activity. Thus, we included 
peak activations from one contrast (with corresponding limits on variations in the 
paradigm) in the meta- analysis. This is the contrast comparing activity for non-
grammatical > grammatical sequences (NG > G) during the classification phase of 
grammaticality judgments. We considered AGL studies and studies where the task was 
framed as SL, but where stimuli involved a learning phase with exposure to structured 
sequences, as in AGL. Many studies (in particular SL studies) were excluded due to a lack 
of the NG > G contrast (Karuza et al., 2013; Opitz & Friederici, 2003, 2004; Weber, 
Christiansen, Petersson, Indefrey, & Hagoort, 2016; Yang & Li, 2012). To streamline the 
parameters of the ingoing studies further, we excluded peaks reported with behavioral 
performance included in the model (Kepinska et al., 2016) and the peaks reported when 
including measures from a receiver operating characteristic (ROC) analysis in the model 
(Hauser et al., 2012). Seven studies remained (Bahlmann, Schubotz, & Friederici, 2008; 
Folia, Forkstam, Ingvar, Hagoort, & Petersson, 2011; Forkstam, Hagoort, Fernández, 
Ingvar, & Petersson, 2006; Friederici, Bahlmann, Heim, Schubotz, & Anwander, 2006; 
Opitz & Friederici, 2007; Petersson, Forkstam, & Ingvar, 2004; Wilson et al., 2015). If a 
study used a 2×2 design and two levels of NG > G were reported, we inserted peaks from 
both levels. In multiday learning studies, we entered the last reported measurement (or 
alternatively the last day with subtracted NG > G contrasts at baseline, if not, the “last 
day only” was reported). In the case of one entered study, the overlap of session with 
grammaticality and preference instructions was used (Folia et al., 2011).

When thresholding the meta-analysis of the NG > G contrast at an FDR-corrected level of 
0.05 (assumed correlations in data: independence or positive dependence) or 
alternatively correcting at the cluster level (using a cluster-forming threshold of p
>0.001) with permutation testing, six clusters were significant: the left and right frontal 
operculum, the left and right IFG, and the left and right middle frontal gyrus (MFG). 
When correcting for multiple comparisons with FDR, without any assumptions on the 
correlations in the data, only the bilateral frontal operculum (extending into the inferior 
frontal gyrus on the left), were significant. These results emphasize the relatively larger 
contributions from the right hemisphere seen in AGL, compared for example to complex 
syntax in natural language experiments, which are largely left-lateralized (Hagoort & 
Indefrey, 2014). These results also emphasize the contributions from the frontal 
operculum. A majority of adult AGL studies use visual presentation, and the literature 
thus has to be carefully taken into consideration as being biased toward finding the 
activations related to visual processing. Only one study that went into the meta-analysis 
of NG > G contrast was an auditory study (Wilson et al., 2015). Interestingly, 
however, both the human and macaque data from this study point to the conclusion that 
the most robust region is the same region as in our meta-analysis: the frontal operculum 
(bilaterally). Right hemisphere contributions were also generally highlighted both by the 
meta-analysis, in right FOP, right IFG, and right MFG, as well as in the human data in 

(p. 767) 
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Wilson et al. (2015), in right FOP, the right posterior parietal cortex (BA39), the right 
middle temporal gyrus, the right frontal pole, and the right lateral occipital gyrus. The 
bilateral FOP (often together with the neighboring anterior insula) has been implicated in 
cognitive (e.g., control, attention, awareness, decision-making) and perceptual (e.g., 
taste) processes. The FOP in particular has been established as a causal node affecting 
cognitive control processes (Higo, Mars, Boorman, Buch, & Rushworth, 2011). These 
authors assign a “dual role [ . . . ] in using arbitrary rules to guide response selection 
[ . . . ] and in retrieving information from posterior regions to do so.” Under this view of 
the FOP, activity seen in this region in the NG > G contrast of AGL studies could be 
interpreted as a consequence of domain-general cognitive control processes involving the 
application of rules (although rules should not be thought of as in opposition to, e.g., 
pattern learning, in this context, see section 33.1.1.3). The anterior insula, the ventro-
medial prefrontal cortex, and the FOP together form the so-called salience network
(Craig, 2009). This network is activated, possibly linking with the sympathetic part of the 
autonomous nerve system, when a stimulus is particularly relevant for the participant, 
whether in a cognitive or emotional task, or when threatened, for example by uncertainty 
or pain (Seeley et al., 2007). A possible interpretation of the current FOP results in the 
NG > G contrast is that the non-grammatical sequences are more salient, perhaps even 
mildly threatening to participants (remember that they are also dispreferred in 
preference tests).

In summary, a relatively unbiased review of the neural circuitry involved in detecting 
violations (compared to correct sequences) in AGL experiments reveals a network 
markedly different from the regions most robustly involved in processing related aspects 
of natural language processing, for example natural language syntax (e.g., LIFG and left 
posterior superior/middle temporal gyrus). LIFG remains a region of overlap of artificial 
and natural syntactic processing. The robust activation of the nearby FOP region 
(bilaterally) is notable as a homologue pair of structures that are less often implicated in 
natural syntactic processing. However, the adjacent anterior insula, clearly left-
lateralized, has repeatedly been implicated as one of the most reoccurring sites to display 
lesions in aphasia patients with both production and comprehension deficits (Bates et al., 
2003; Dronkers, 1996). We will return to the left posterior superior/middle temporal 
gyrus in section 33.3.

33.3 AGL in relation to natural language
We have written on the properties of grammars of AGL and natural languages. Although 
artificial grammars are much smaller toy models of the grammars of natural languages, 
artificial grammars with the same formal properties as natural grammars can be studied 
to mitigate other methodological issues of natural language research (such as the 
influence of semantic processing).
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33.3.1 Syntax and phonology

We have already mentioned that syntax and phonology (more precisely phonotactics) are 
the two aspects of natural languages that have been studied with AGL. Recently, it has 
been noted that hierarchy, a hallmark of syntactic structure, is not present in phonotactic 
patterns (Berwick & Chomsky, 2016; Heinz & Idsardi, 2011). Finite state grammars (see 
section on formal grammar theory and AGL) suffice to describe phonotactically legal 
sequences of speech sounds. If this holds, it will be crucial to select the right kind of 
grammar when using AGL for studying natural language syntax and/or phonology. 
Whether (or how) these grammar aspects map onto differences in neurobiology would 
become an important future question.

Berwick and Chomsky (2016) review a way of defining more precisely what hierarchy in 
natural language syntax corresponds to in terms of formal grammar theory. They take the 
starting point of the internal merge operation as the core of human syntax. The internal 
merge operation corresponds to formal grammars of a class called multiple context-free 
grammars, which augments context-free grammars in one respect. Non-terminals (on 
both the left and the right hand side) can now include an extra internal variable (the same 
variable, e.g., x on the left and right). This variable can take on different words or word 
sequences. Application of this rule, when including the internal variable, corresponds to 
copying performed by internal merge (this is somewhat informally stated in Berwick & 
Chomsky, 2016). We also refer the interested reader to two of the more accessible, 
precise sources of the formal treatment of hierarchy in the context of multiple context-
free grammars, that we are aware of (Clark, 2014; Stabler, 2011). Other less subtle, but 
laudably clearly stated definitions of hierarchical structure appear in Fitch (2014), where 
any structure whose graph takes the form of a rooted tree is hierarchical (where a rooted 
tree is an acyclic, fully connected graph with a designated root node). It is beyond the 
context of this AGL chapter to determine the most useful approach to hierarchical 
structure (when describing natural languages in formal language theory or more 
generally). Nonetheless, we note that this is a fundamental theoretical issue, where 
integration across disciplines would be fruitful.

33.3.2 AGL, hierarchically structured sequences, and the left dorsal 
language system

An alternative approach when reviewing neuroimaging literature on AGL is to consider 
the left dorsal language pathway. Not only is this particularly relevant for considering the 
relevance of AGL for models of natural language processing (Bornkessel-Schlesewsky & 
Schlesewsky, 2013; Bornkessel-Schlesewsky, Schlesewsky, Small, & Rauschecker, 2015), 
but it is also important for understanding the AGL literature. In the view of Bornkessel-
Schlesewsky and coauthors, the dorsal pathway subserves sequence processing in 
general. It has previously been noted (Friederici & Singer, 2015) that one needs to be 
careful when discussing the function of a pathway, in particular when there is a lack of 

(p. 768) 
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research on connectivity. There are no connectivity studies that we are aware of that 
would give direct support for the involvement of the dorsal pathway as such in AGL (or 
other sequence processing paradigms without semantics). Another point to make when 
discussing the model by Bornkessel-Schlesewsky and coauthors (also pointed out by 
Berwick & Chomsky, 2016) is that hierarchical sequence structure is not treated 
separately in this model. Whether the dorsal pathway (as a whole) is involved in sequence 
processing without discrimination of different structures or whether it is more involved in 
hierarchical compared to non- hierarchical sequences (Friederici, 2012) has still not been 
directly tested. The developmental perspective might become particularly important, as 
exemplified by one study on natural language syntax performance that explained 
behavioral variation as a function of development of the dorsal (white matter) pathway as 
a whole (Skeide, Brauer, & Friederici, 2016). It is beyond the scope of the chapter to fully 
review this line of research, but we nevertheless would like to point it out as promising.

33.3.3 Temporal lobe contributions to AGL versus complex syntax

The LIFG, together with the left posterior superior/middle temporal gyri, are the two 
most robustly activated regions across different contrasts of syntactic complexity, and 
their role has been clarified in recent models of the neurobiology of language (Friederici, 
2012; Hagoort & Indefrey, 2014). For a more general introductory text on the involvement 
of these regions in language processing, see Kemmerer (2014). As these regions are also 
the “end stations” of the dorsal language pathway, we will now discuss evidence on the 
involvement of the left superior/middle posterior temporal lobe in AGL. We will use the 
abbreviation LPUTG (left posterior superior/middle, i.e., upper, temporal gyri) to refer to 
this anatomical location, which also includes the posterior part of the intervening left 
superior temporal sulcus. When reviewing the literature that include contrasts where 
non-grammatical items are compared with grammatical items, a notable difference, 
probably related to grammar type, emerges. In our meta-analysis, as well as in many 
studies using finite state grammars, not a single peak is located in LPUTG (Folia et al., 
2011; Forkstam et al., 2006; Petersson et al., 2004). One possibility is that this is related 
to the absence of semantics in AGL. A related observation is the absence of temporal lobe 
contributions in the inflectional morphology only condition, in Goucha and Friederici 
(2015). However, in one study using PSG (Friederici et al., 2006) and in a final study 
where PSG and FSG were studied together in the NG > G contrast (Bahlmann et al., 
2008), this region was more active for NG than G, suggesting that semantics should not 
be the determining factor for what causes posterior temporal lobe activation in the 
context of (complex) syntax. In two studies using versions of the BROCANTO grammar 
(Kepinska, de Rover, Caspers, & Schiller, 2016; Opitz & Friederici, 2007), which includes 
semantics, there were peaks in LPUTG for NG > G, consistent with this interpretation. 
Another study using BROCANTO reported null results in the NG > G contrast (Hauser et 
al., 2012). We are not aware of any other studies on BROCANTO, PSG, or FSG grammars 
that report the standard NG > G contrast. In two other studies using non-modified 
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BROCANTO (Opitz & Friederici, 2003, 2004), there were, however, learning-related (i.e., 
this did not come from the NG > G contrast but might reflect the same underlying 
process) effects along the left anterior and posterior temporal lobe (including LPUTG).

In an auditory study using finite state grammars, LPUTG was also activated in human 
participants in the NG > G contrast (Wilson et al., 2015). In an auditory SL study, there 
was activation in the LPUTG in a contrast of randomized syllable sequence > regular
auditory syllable sequence (McNealy, Mazziotta, & Dapretto, 2006). In this study, 
during the course of exposure, there was an increase in the regular condition in the 
LSTG. This finding was independently replicated (Cunillera et al., 2009), as an interaction 
in LSTG, between the first and second blocks in the random versus rest contrast. These 
results of AGL and SL tasks might be a consequence of the brain processing auditory 
features of the elements in auditory cortex near LPUTG. For instance, the activation 
might be a “downstream” effect, during the absence of successful prediction (in the case 
of NG and random sequences), observed as increased BOLD in corresponding sensory 
regions. Alternatively, without reference to predictive processes, computation of 
sequence regularities as such might be partly subserved by sensory cortices. These 
suggested interpretations warrant a follow-up review of visual AGL and SL studies. Is it 
the case that NG > G and random > structured contrasts (or other “structure-contrasts”) 
do not engage LPUTG in visual experiments with simple regularities? Are visual areas 
instead active in corresponding contrasts? Indeed, two visual AGL and SL studies show 
bilateral or left visual ventral stream (VVS) activation, extending into the inferior 
temporal lobe, in structure-contrasts (Petersson et al., 2012; Turk-Browne, Scholl, Chun, 
& Johnson, 2009) without showing activation in LPUTG. One additional visual study did 
not report LPUTG, but is ambiguous with respect to a left VVS activation (Forkstam et al., 
2006). There was no activity in VVS for an NG > G contrast, while a region in left VVS is 
reported as significant in results reporting the same contrast (shown in Figure 4B in the 
study). An additional visual study showed activity restricted to LIFG in an NG > G 
contrast (Petersson, Forkstam, & Ingvar, 2004). Are visual areas active in structure-
contrasts of the auditory studies we have reviewed? Of the three studies we’ve just 
considered here, two do not show any VVS activity (Cunillera et al., 2009; McNealy et al., 
2006), and one study showed right lateralized VVS activity in an NG > G contrast.

Note that this observation of modality dependence would be trivial if the contrast we 
discussed was grammaticality judgment versus rest. Crucially, we observe this division 
into auditory and visual areas when contrasting two conditions of the same (visual or 
auditory) elements. In these contrasts, it is only the amount of structure (i.e., regularity in 
the sequences) which is different across conditions and it is thus not expected that these 
structure-contrasts would activate visual versus auditory areas in visual versus auditory 
experiments, respectively, under the assumption of domain-general structure sequence 
operations. In this context, it is also relevant to note that there is limited so-called 
transfer (from some acquisition elements to a new set of elements in the test phase) in 
AGL (Tunney & Altmann, 1999), as recently reviewed (Frost, Armstrong, Siegelman, & 
Christiansen, 2015) . Taken together, these findings point to non-shared neural 
substrates across modalities. This is in contrast to complex syntactic processing in 
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natural language, which seems to be largely supramodal (Constable et al., 2004). Three 
possible factors explaining these differences are: (1) differences in what kind of 
regularities govern sequences (e.g., hierarchical); (2) semantics; and/or (3) the time 
needed for stabilizing neural representation of regularities, and during which 
maturational period they are acquired. In summary, the use of an auditory grammar 
might be a parallel reason (alongside the grammatical type described here) why 
peaks in LPUTG are observed in an AGL paradigm. See also Figure 33.3, the Chomsky 
hierarchy.

Altogether, this suggest that parts of the LPUTG are sometimes activated in AGL tasks 
and may thus play a role in processing, perhaps particularly complex syntax, also in the 
absence of semantic content. However, too few studies exist to draw conclusions on 
exactly which conditions lead to activation in the left posterior middle/superior temporal 
lobe (LPUTG) in AGL experiments. One interesting possibility is that the LPUTG, and 
LIFG (as end-stations of the left dorsal pathway), together form a network subserving 
sequence processing of hierarchically structured (in the sense we have attempted to 
formally describe already) sequences. This overall processing network might consist of 
distinguishable spatio-temporal processing aspects related to, for example, online 
memory versus syntactic operations such as internal merge. AGL paradigms will continue 
to shed light on these and related issues. A concrete suggestion for a tractable hypothesis 
to test in future research is that the degree of activation may interact with modality 
(possibly more likely to be active for auditory than visual AGL) and grammar type (so far, 
more for nested hierarchical grammars as well as the BROCANTO grammar, compared to 
studies on regular grammars). We also note that a review of the (inferior) parietal cortex 
in AGL studies would be valuable, as this region is also an end-station of the indirect 
segments of the dorsal pathway and often recruited during sentence processing.

33.4 AGL research in infancy

(p. 771) 
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In aiming to unravel first language acquisition, AGL studies have addressed how infants 
extract structural units and sequence regularities from speech input, and how they form 
generalizations and syntactic category knowledge (see Gómez & Gerken, 2000). 
Comprehensive behavioral research has revealed infants’ impressive decoding of adjacent 
and non-adjacent relations of speech input elements as well as their realization in 
abstract speech patterns, so-called algebraic rules. We will briefly sketch the two 
associated lines of behavioral research and illustrate how neuroimaging research 
substantially contributes to delineating the developmental timeline of infants’ structure 
processing abilities.

A first line of behavioral AGL research emerged from the landmark study by Saffran et al. 
(1996), showing that eight-month-old infants utilize transitional probabilities of syllables 
for defining word boundaries in continuous speech. Follow-up studies demonstrated that 
infants employ statistical speech properties in word segmentation (Marchetto & Bonatti, 
2015; Saffran, 2001; Shukla et al., 2011), discovering non-adjacent structure regularities 
(Gómez & Maye, 2005; Marchetto & Bonatti, 2015), acquiring lexical-semantic categories 
(Lany, 2014; Lany & Saffran, 2010), and establishing grammatical categories (Höhle et 
al., 2004; Shi et al., 2006). A second line of behavioral AGL research is based on the 
seminal study by Marcus et al. (1999), reporting seven-month-old infants’ ability to detect 
abstract speech patterns, as defined by repetitions and alternations of speech elements 
(see also Gómez & Gerken, 1999). This structure sensitivity might initially be perceptually 
driven by the detection of immediate repetitions (see Endress, Nespor, & Mehler, 2009). 
However, successful generalization of theses patterns attests infants’ abstract 
representations (Marcus et al., 1999). Follow-up studies showed that six- to seven-month-
olds learn these so-called algebraic rules preferably from speech input, compared 
to other auditory and visual input, suggesting infants’ pattern sensitivity to be speech-
specific at this age (Marcus et al., 2007; Rabagliati et al., 2012).

During the last decade, a growing number of neuroimaging studies have significantly 
complemented the insights on language acquisition gained from behavioral AGL studies. 
Importantly, behavior-independent neuroimaging methods can capture the earliest 
instances of infants’ structure sensitivity and, moreover, specify the underlying brain 
mechanisms. In the following, we will present ERP and fNIRS evidence sketching infants’ 
advancing processing abilities, from adjacent dependencies, to repetition-based abstract 
speech patterns (algebraic rules), to computationally more demanding non-adjacent 
dependencies.

33.4.1 Processing of adjacent dependencies

Behavioral research has shown that statistical computations of adjacent input elements 
are among infants’ earliest speech decoding abilities, functional during the second half of 
infants’ first year (Saffran, 2001; Saffran et al., 1996). Extending this evidence, ERP 
studies indicate the presence of statistical mechanisms for neighboring input elements 
already at birth (Kudo et al., 2011; Teinonen et al., 2009). For example, Teinonen et al. 
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(2009) presented newborns with a stream of syllable triplets (e.g., ea-ke-sa) that had high 
within-triplet, but low between-triplet transitional probabilities. Infants’ ERPs revealed 
more negative responses to the first than to the other triplet syllables, suggesting that 
infants processed the statistically defined word onset syllable differently to the other 
syllables. The authors concluded that newborns readily segment words from the input by 
computing transitional probabilities of adjacent elements. In a recent fNIRS study, Ferry 
et al. (2016) demonstrated that newborns process adjacent dependencies in even longer 
stimulus sequences, but only in the presence of supporting perceptual cues. Specifically, 
results showed that after being familiarized with six-syllable sequences (e.g., si-me-bu-ta-
le-fo) infants detected a sequence-internal switch of syllables (e.g., si-me-ta-bu-le-fo) if 
the two middle syllables were separated by a short pause and thus acoustically marked. 
Together, these findings highlight newborns’ impressive decoding abilities for directly 
neighboring input elements and the crucial role of facilitating statistical and acoustic 
input cues (see Endress, Nespor, & Mehler, 2009).

33.4.2 Sensitivity to algebraic rules

In analyzing speech input, infants are not only challenged to process adjacent 
dependencies of elements, but also to recognize their underlying patterns. Behaviorally, it 
has been shown that seven-month-olds derive generalizations from stimuli containing the 
same repetition-based adjacent relations (Marcus et al., 1999). Using fNIRS, Gervain et 
al. (2008) followed up on this evidence and tested newborns with syllable triplets of 
repetition-based ABB structures (e.g., mu-ba-ba) or random ABC structures (e.g., mu-ba-
ge). The authors found enhanced hemodynamic responses in temporal and left frontal 
regions for ABB versus ABC sequences, with increasing responses over time. These 
results suggest that newborns readily differentiate repetition-based and random 
structures, preferentially processing immediate repetitions in cortical areas 
specific to speech processing (see also Gervain et al., 2012). The fact that infants showed 
this differentiation across different syllable sequences indicates that even newborns are 
able to form some pattern abstraction. Interestingly, the enhancement for repetition-
based patterns was only observed for adjacent ABB repetitions, but not non-adjacent ABA 
repetitions. This difference points to newborns’ processing limitations, such that they 
successfully extract adjacent dependencies, but not yet computationally more demanding 
non-adjacent dependencies.

A process highly related to the detection of repetition-based abstract patterns is the 
detection of sequence changes; when expectations built from stimulus repetitions are 
violated by the occurrence of new stimuli. Basirat et al. (2014) evaluated three-month-
olds’ ERP mismatch responses to local sequence changes (e.g., rare vowel a after 
frequent vowel i) and global sequence changes (e.g., rare sequence a-a-a-a after frequent 
sequence a-a-a-i). Interestingly, infants showed a mismatch response to local stimulus 
changes that was modulated by global sequence changes. Specifically, changes in global 
context resulted in enhanced mismatch responses and were, in addition, followed by a 
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late negative slow wave, most likely indicating stimulus integration. These results imply 
that infants at three months are not only sensitive to immediate changes in auditory 
sequences, but also to more global sequence patterns.

Following the findings of repetition-based pattern processing in newborns (Gervain et al., 
2008), Wagner et al. (2011) examined the developmental trajectory of this ability. 
Interestingly, fNIRS results of seven-month-olds resembled the outcome in newborns, 
such that their hemodynamic responses were stronger for repetition-based ABB 
structures than random ABC structures. In contrast, nine-month-old infants showed the 
reverse pattern with enhanced responses to ABC over ABB structures. Based on these 
findings, the authors discuss a potential developmental change in the processing of 
abstract patterns, such that infants initially favor stimulus salience (i.e., repetition), but 
are later drawn to novelty (i.e., stimulus variability).
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33.4.3 Processing of non-adjacent dependencies

In contrast to infants’ early processing of adjacent relations and their generalization, the 
considerably more complex processing of non-adjacent relations has been suggested to 
arise between children’s first and second year of life (Gómez & Maye, 2005; Marchetto & 
Bonatti, 2015). Neuroimaging studies extend this behavioral evidence, showing that 
infants master non-adjacent computations before reaching their first year. Mueller et al. 
(2012) observed that even at three months of age infants were able to detect non-
adjacent rule violations in syllable triplets, as evidenced by infant mismatch responses in 
the ERP. In this oddball paradigm, two frequent syllable frames (i.e., le . . . bu and fi . . . to) 
served as standards that established the non-adjacent dependency rule. Infrequent 
deviants either violated the acoustic stimulus features of the third syllable (i.e., pitch 
deviants) or the rule features (i.e., rule deviants). Interestingly, infants’ ability to process 
non-adjacent dependencies was associated with their auditory processing capacities, such 
that only those infants who showed a more mature mismatch ERP response to pitch 
violations also detected the rule violations. This association suggests that infants only 
begin to master non-adjacent dependency processing once their processing and memory 
capacities can sufficiently capture distant relations. Kabdebon et al. (2015)
examined non-adjacent dependency processing in infants at an older age, in full-term and 
preterm eight-month-olds. The authors evaluated infants’ ERP responses and EEG-phase-
locking to three-syllabic test words that were consistent (e.g., ku-na-bi) with a non-
adjacent rule introduced in a familiarization speech stream (i.e., ku . . . bi) as compared to 
test words that were inconsistent with this rule (e.g., fi-bi-na). Regarding ERPs, consistent 
test words evoked larger responses than inconsistent words during the second and third 
syllables, interpreted as a familiarity effect driven by rule prediction. In a later time 
window, however, inconsistent words evoked larger ERP responses than consistent words, 
interpreted as an attention allocation to unexpected events. Moreover, EEG-phase-locking 
results during test revealed higher beta band values during the first syllable of all words 
and higher alpha band values after the offset of inconsistent than consistent words. In the 
language domain, power changes in the beta band have been consistently found to reflect 
the degree of a word’s contextual predictability (see Lewis et al., 2016) and here likely 
reflect infants’ expectation of the putative word onset. In contrast, increased alpha power 
has been observed for increased working memory loads, specifically during adults’ 
processing of long-distance dependencies in sentences (Meyer, Obleser, & Friederici, 
2013), and may imply infants’ prolonged attention orientation to the unexpected, 
inconsistent words with an attempt to correct. Importantly, there were no processing 
differences between full-term and preterm-infants, thus confirming the previous finding 
of non-adjacent dependency processing being functional early during infants’ first months 
of life (Mueller et al., 2012).

Complementing this AGL research, Friederici et al. (2011) demonstrated infants’ early 
processing of non-adjacent relations for natural language learning by utilizing a non-
native language. In this ERP study, German four-month-olds were familiarized with Italian 
sentences containing two grammatical non-adjacent dependencies between a respective 
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auxiliary and a verb’s inflection, with 32 different verb stems being the variable middle 
element (e.g., stacant-ando; is singing; puo cant-are; can sing). Following the 
familiarization, infants were presented with new sentences that were either grammatical 
or contained a violation of the non-adjacent dependency, resulting in ungrammatical 
structures (e.g., staarriv-are, is arrive; puo arriv-ando; can singing). ERP responses in the 
first test phase revealed no processing differences between grammatical and 
ungrammatical structures, whereas in the last test phase there was a pronounced 
positivity in the ERP response to the dependency violations as compared to the 
grammatical structures. These results indicate that at four months of age, infants can 
acquire non-adjacent dependency rules in a natural language online, after only brief 
structure exposure.

Together, these studies demonstrate infants’ impressive ways of extracting structural 
input features by means of statistical computations, abstract pattern recognition, and 
their generalization. To date, there is increasing evidence on the developmental timeline 
of these abilities, such that the ability to process adjacent structures is present at birth 
and advances toward non-adjacent structure processing during infants’ first year of life. 
Thus, highly sensitive neuroimaging techniques have uncovered much earlier instances of 
structural learning than have been observed with behavioral techniques (Gómez & Maye, 
2005; Marchetto & Bonatti, 2015). Differences in reported acquisition age, however, 
might not only reflect methodological differences, but also result from capturing different 
knowledge representations (for discussion, see Gómez, 2016). While current 
neuroimaging studies mostly focus on infants’ fast encoding of structural 
patterns, future studies will have to evaluate the retention of learned patterns over time.

Despite current advances in studying infants’ structural learning capacities, there is still 
a lack of developmental AGL studies on more complex grammatical relations typical for 
human language. Natural language involves not only adjacent and single non-adjacent 
dependencies, as described here, but also, for example, multiple embedded non-adjacent 
dependencies (Bever, 1974; Gibson, 1998). A first step into studying more complex 
structure processing is the behavioral study by Kovacs and Endress (2014), showing that 
seven-month-olds process embeddings in repetitive structures. The authors tested 
whether infants detect how word-level repetition patterns define higher-level sentence 
patterns. During familiarization, infants listened to three-syllable ABB words (e.g., du-ba-
ba) or ABA words (e.g., du-ba-du), thus containing adjacent or non-adjacent repetitions. 
These words were organized in three-word ABB sentence structures, such that the two 
last words had the same repetitive structure (e.g., du-ba-du lo-mo-mo za-vu-vu). When 
tested with new instances of the known ABB sentence structure (e.g., ti-pe-ti re-je-je fe-si-
si) and novel AAB sequences (e.g., ti-pe-pe re-je-je fe-si-fe), infants looked at the new 
sentence structure type longer. The fact that infants only detected the higher-level 
change in sentence structure, if words contained adjacent ABB repetitions, but not non-
adjacent ABA repetitions, again points to infants’ early processing advantage of adjacent 
over non-adjacent dependency relations. Nevertheless, these data reveal first evidence of 
infants’ ability to process word-level structures embedded in higher-level structures 
during the first year of life. Following this work, there are now first ERP studies 
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indicating that infants are not only able to process one level of embedding, but even 
multiple levels of embedding (Winkler et al., 2015, 2016). In these studies five-month-old 
infants were tested with seven-tone sequences that contained three non-adjacent 
dependencies, nested around a center marker tone. In an auditory oddball paradigm, 
frequent standard sequences established the multiple center-embedded structure, while 
infrequent deviant sequences contained violations of the two outer dependencies. 
Importantly, mismatch responses to these violations indicated infants’ detection of the 
underlying structural rules. Thus, infants at this young age show impressive abilities in 
processing multiple nested dependencies, which even for adults are challenging to 
accomplish (de Vries et al., 2011; Karlsson, 2007).

Future neuroimaging research will have to specify the potentially different neural 
mechanisms underlying these complex processing abilities across development. Parallel 
to the literature showing infant learning of non-adjacent dependencies (even multiple 
non-adjacent dependencies), there is an ongoing line of work on adult learning of multiple 
non-adjacent dependencies (Ottl, Jager, & Kaup, 2015; Uddén et al., 2012). Follow-up 
experiments (e.g., using passive listening paradigms) in infants and adults exposed to 
nested, crossed, and other theoretically interesting structures would be a promising way 
forward for future integration of adult and developmental AGL literature.

33.5 Conclusion
We have created an AGL key that exposes the most relevant variations in the AGL 
paradigm, in the light of current open questions, for example with regard to its relevance 
for natural language processing and language learning. Currently, an outstanding 
tractable question in AGL research is whether it can be demonstrated that 
domain-general sequence processing mechanisms explain at least part of the 
performance observed in AGL studies. We speculate that complex grammars might 
trigger relatively more domain-general processes than less complex ones, but this 
remains to be validated in both psycholinguistic and neuroimaging experiments. The lack 
of conclusive evidence of such domain-general processes is salient, as the lesson from 
sensory neuroscience is that brain organization can largely be understood as based on 
stimulus features. The issue of domain-generality of sequence processing is of importance 
for understanding the limitations of generalizability of AGL results to research on natural 
syntax, since there is a literature showing that syntactic processing in natural language 
should be understood as largely supramodal. The issue of whether implicit versus explicit 
sequence learning might be subserved by different neurobiological mechanisms is also 
still open, and studies addressing this question in the future should take novel, more 
sensitive ways of probing for (conscious) access into account. This is important for 
clarifying the relevance of the AGL paradigm for language learning. Implicit AGL 
paradigms are generally of higher relevance for L1 language learning, but still, the 
underlying neurobiology develops/matures remarkably and changes in AGL performance 
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are expected as a consequence of growing up. This naturally limits the relevance of adult 
AGL experiments for L1 language learning and comparative developmental studies are 
warranted. Our meta-analysis of FMRI-studies including the NG > G contrast highlights 

similarities and differences between robustly activated regions in AGL and natural 
language processing (in particular for complex syntax). While a lot has already been said 
about the LIFG in this context, we now extend this discussion to also include, for 
instance, the FOP and LPUTG. We have also identified a problem at the interface of AGL 
and natural language research, which is that the central term hierarchy is often used 
without references to which out of several existing definitions it refers to. Particularly in 
the context of a well-defined notion of hierarchy, AGL experiments on relative learning 
difficulties and neural implementation of hierarchical versus non-hierarchical grammars 
is of continuing importance. Given methodological advancements, these open questions 
are now also increasingly tractable in the developmental AGL literature.
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